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We study the Hopfield model of an autoassociative memory on a random graph 
on N vertices where the probability of two vertices being joined by a link is 
p(N). Assuming that p(N) goes to zero more slowly than O(1/N), we prove the 
following results: (1) If the number of stored patterns m(N) is small enough 
such that m(N)/Np(N) J, O, as NTov, then the free energy of this model 
converges, upon proper rescaling, to that of the standard Curie-Weiss model, 
for almost all choices of the random graph and the random patterns. (2) If in 
addition m(N) < lnN/ln 2, we prove that there exists, for T<  1, a Gibbs measure 
associated to each original pattern, whereas for higher temperatures the Gibbs 
measure is unique. The basic technical result in the proofs is a uniform bound 
on the difference between the Hamiltonian on a random graph and its mean 
value. 

KEY WORDS:  Neural networks; Hopfield model; random graphs; mean-field 
theory. 

1. I N T R O D U C T I O N  

The Hopfield model  of  an 
Hami l ton i an  function 

autoassociat ive m e m o r y  (12) is described by a 

N ( i , j )eAxA ,u=l 

on the space 6 eN of spin configurations a -= {a,-}i~A, where, for a given positive 
integer N, A = { 1 ..... N} and the spins variables a l e  5 e = { - 1, + 1 } indicate 
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the excitation state of the neuron i. The variables {~}~"ZA ~ ...... ~.~9 ym• 

describe the m patterns the system is supposed to memorize. It is generally 
assumed that these patterns are "random," i.e., the components ~,." form 
a family of m N  independent, identically distributed random variables. 
Typically, one is interested in choosing m as a function of N as large as 
possible under the condition that certain crucial properties of the system 
are retained ("memory capacity"). 

It was noticed very early (see, e.g., ref. 1) that this model formally 
resembles closely a mean-field model of a spin glass, the Sherrington- 
Kirkpatriek model, (18) which has been heavily investigated by physicists 
(see for a review ref. 16). Therefore, tools from spin-glass theory, such as 
the replica method, have been employed to study this model. More 
recently, it has been realized that the Hopfield model is in fact much easier 
to handle in a mathematically rigorous way than real spin-glass models, at 
least if the number of stored patterns m is subject to certain restrictions. 
Moreover, m may serve as a parameter that allows one to continuously 
drive the system from an essentially trivial regime (m = 1) to a highly 
complex and unpredictable "spin-glass" regime (m > N). From this point of 
view, the Hopfield model does represent in fact an extremely interesting 
disordered mean-field model. 

Let us describe some of the main results so far obtained (for a more 
extensive account, see the articles in ref. 8): In 1989, Koch and Piasko gave 
in a remarkable article u4) a complete analysis of the thermodynamic limit 
of this model under the constraint that m is allowed to grow with the 
system size N no faster than (ln N)/ln 2, using a method originally intro- 
duced by Grensing and K/ihn. ~11) Their construction implied the almost 
sure convergence of the free energy to a calculable limit (which is simply 
the free energy of the standard Curie-Weiss model) as well as that of the 
distribution with respect to the Gibbs measures of the so-called overlap 
parameters 

m~v(~; a) = 1 ~  ~ a i  (1.2) 

A detailed description of these results will be given later. These results have 
been sharpened and generalized to the q-state Potts version of this same 
model by Gayrard. u~ More recently, Koch ~s) obtained a further very 
interesting result. He proved bounds on the free energy for all finite N that 
in particular imply that if m is chosen such that limNr ~ ( m / N ) =  0, then the 
expectation of the free energy with respect to the distribution of the 
patterns converges to the free energy of the Curie-Weiss model. As a 
matter of fact, it is very easy to extend his results to obtain the almost sure 
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convergence of the free energy (see Section 3 of this article). It should be 
noted that this result holds for all temperatures. 

The Hopfield model as given by (1.1) can be seen as a spin system on 
the complete graph on { 1 ..... N}. Both from the point of view of applica- 
tions in the context of neural networks and from that of the theory of 
disordered systems, it is desirable to study generalizations of the Hopfield 
model on more general graphs, and in particular on random graphs; still 
more generally, one may even wish to study this model when the interac- 
tion between sites i and j is not only governed by the matrix ~ ~ but 
is modulated by a random variable eij. This model is then called the "dilute 
Hopfield model" and is given by the Hamiltonian 

1 Z Y= (1.3) 
HN(~;  e; O') = NP(i,j)eA• A u = l  

i ~ j  

where p = ~(~) > 0. Dilute neural network models are frequently studied in 
the regime where p = c /N  with c @ In N (so-called highly dilute model). 
There it has been noted by Derrida et al. (7) that the dynamics of this model 
with asymmetric e,-j (i.e:, ao independent of eji) can be solved exactly in the 
limit N T + if the number of patterns is kept proportional to c. The reason 
for this is that in this limit the underlying graph has essentially the struc- 
ture of a (disconnected) tree (see, e.g., ref. 5). An undesirable feature in this 
situation is the instability of this model against mixing of patterns and thus 
noisy dynamics. This last point is very easily understood in terms of the 
Hopfield Hamiltonian (1.3). Namely, if the underlying graph has the 
structure of a tree, then by cutting any edge it becomes disconnected, and 
choosing a to equal one pattern on one of the components and another on 
the second, one finds that this configuration differs in energy only by a 
finite amount from the original patterns. Moreover, one may construct an 
infinite number of such mixtures. 

Diluted networks are of interest not only if they are easier to analyze, 
but also for pragmatic reasons of network architecture. In very large net- 
works, maintaining full connectivity is clearly undesirable if not impractical 
for technical reasons. It is thus natural to ask how such a model behaves 
if it is less highly diluted, and in particular one may ask how much the 
network may be diluted if the properties of the fully connected network 
are to be retained. This has been done recently (3~ in the regime where 
m = ~Np, where it has been shown that rigorous lower bounds on the 
storage capacity as proven first by Newman <17) for the model (1.1) can be 
recovered in this situation, provided that p >~ [(ln N ) / N ]  m. 

In the present paper we study this model from the point of view of 
mean-field theory in the regime where m ~ N. As we will see, the mean-field 
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results prove fairly robust against the effect of dilution and can be reproven 
under fairly weak assumption on the eu, although we must always require 
p to be much larger than in Derrida's model. 

To be able to make precise statements, we need to introduce some 
notation. First, let f2~-= { - 1 ,  +1} ~• o~ the corresponding Borel 
a-algebra, and let Pc denote the product measure on ~2r such that 
~ - { ~ } ~ " 2 ~  is a family of independent, identically distributed random 
variables with P r  +_1)= 1/2. Note that for a given, nondecreasing 
function m: N ~ N we will denote by ~(N) the family ~ " / " =  1,...,rn(N) I. i J i = l , . . . , U  " 

To define the probability space for the dilution variables e, we need to 
be slightly more sophisticated due to the fact that we want the marginal 
distributions of the e 0 to depend on the size of the network while at the 
same time define all Hamiltonians for different N on the same probability 
space. A way of doing this is the following. 3 Let (g2,, ~ ,  P,) be some 
abstract probability space and let { Wo}i,j~ N • ~ be a family of i.i.d, real- 
valued random variables on this space whose common distribution is the 
uniform distribution on the interval [0, 1]. Then for a given function 
p: N --* [0, 1 ] define 

co(N) - ~ {Wij<~p(N) } (1.4) 

where ~ ~ is the characteristic function of the event A, i.e., is equal to one 
if A holds and equal to zero otherwise. Obviously, then, 

P~(e/j(N) = 1) = 1 - P~(eo.(N ) =0)  = p(N)  (1.5) 

as desired, and for fixed N, e~(N) are i.i.d, random variables. Moreover, 
one may check that for fixed i,j, the family {gij(N)}NeN forms a Markov 
chain and for given marginals (1.5) it has the property that P,(eo(N)= 
c o ( N -  1)) is maximized. 

Remark.  Obviously, such a construction can easily be generalized for 
t0(N ) taking values in a more general space than {0, 1 }. 

Let us now define the finite-volume partition functions and free energy 
of our model through 

1 H e o  
Z N ,  j~(r ; e) ~ E ~ e - r  U(r ; ) (1 .6)  

r E ~coN 2 

and 
1 

fu.a(~; e) = -- ~--~ In Z N , ~ ( ~ "  ~ ~,) (1.7) 

3 We are indebted to Chuck Newman for suggesting this form of presentation, which is, 
although essentially equivalent, far more elegant than our original version. 
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Let us further denote by fcw(fl)  the free energy of the Curie-Weiss 
model, (9) i.e., 

f cw( f l )= in f ( -~ lncosh( f l x )+X- - -2 )  (1.8) 

Then, we have the following result. 

Theorem 1. Let p: N ~ (0, 1] be a decreasing function such that 
p(N)NT oo, as NT 0% and let m: N ~ N be an increasing function such 
that m(N)/p(N)N,LO, as N~" oo. Then, for all 0~</~< 0% 

lim fN, a(r ~) = fcw(/~), P~ X PCa.s. (1.9) 
Ntov 

As in the standard HopfMd model, when the number of patterns m is 
small enough, the extremal infinite-volume Gibbs states of the dilute 
Hopfield model are expected to be measures ~ concentrated near the 
original patterns ~ .  Here what we will in fact be interested in is the limiting 
distributions of the overlap parameters (1.2) with respect to the measure (r 
More precisely, in order to construct the measure f#~, we add to the 
Hamiltonian Hu.~,~(a) a "magnetic field" h coupling to the pattern ~ ,  that 
is, we write 

N 
H~v,h(e; 4; o-)-~ HN(/;; ~; o ')--h 20- i~7  (1.10) 

i=1 

We denote by (#~v,p,h(e; ~) the finite-volume Gibbs measure which assigns 
to the configuration a e ~.~U the probability 

exp{ --~SH~v,h(e; ~; a)} (1.11) 
(r e; ~; a) = ~_,,, ~.~U exp{ -- flH ~c,h( e; 4; ~r)} 

We denote by m~v(~ ) the map 

m~(~): ~N__,[_I, 1] 

~ m%(~; a) 
(1.12) 

and by ~c~'~[rn~v(~)] the law of m~v(~ ) under (#~v,e,h(e; #). Let a+(/~), respec- 
tively a-(fl), be the largest and smallest solutions of the equation 
a = tanh(/?a) and define nh~,,(/~)- a-+(/~)6~,~, where c5,,, is the Kronecker 
symbol. Then, denoting by c5{x } the Dirac measure on N concentrated at 
the point x, we have the following result. 
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T h e o r e m  2. Suppose that all the assumptions of Theorem 1 are 
satisfied and that in addition m < In N/In 2. Let e,/~ be fixed. Then, for all 
0~</~< oo, 

lim lira Lf~[m~(r  P~xP~-a.s. (1.13) 
h,[O NT~ 

The same result holds for h T 0 with rh~+,(fl) replaced by rh~,,(fl). 

Remark. The restriction on the number of patterns in Theorem 2 is 
due to the fact that even in the standard Hopfield model, the analog of 
Theorem 2 has only been proven under this hypothesis. If (1.13) holds in 
the standard Hopfield model under weaker restrictions on m, we expect to 
be able to prove it also for the dilute Hopfield model under the same 
conditions plus those of Theorem 1. 

Our proofs of Theorems 1 and 2 actually follow from the analogous 
results in the standard Hopfield model together with the following 
theorem, which really constitutes our main technical result. Let P denote 
the product measure Pc x Pc on (f2~ x g2~, ~r x ~ ) .  

Theorem 3. Let m be an increasing function such that m(N)/NJ, O 
as N T oo. Then there exists an event ~r e ~ and a constant 0 < K <  
such that 

K 
P~(du) >~ 1 -- N--- 5 (1.14) 

and such that if p satisfies p(N)N~ ~ as N]" 0% then, for any strictly 
decreasing function ~: N ~ ~ satisfying v(N) + 0 as NT oo and p(N)N72(N)> c 
for some constant 0 < c < oo, there exists a constant p > 0 such that 

P(V(Y~'-'o~NIHN(~'; r (~)-- ~eHN(~'; r ~)1 < Y,,/mNI d u  x (2~) >~ 1 --e -pu 

(1.15) 

Remark. It should be noted that our results require only the weakest 
plausible conditions on the dilution rate p(N). In fact, in terms of the 
underlying random graph, this condition assures that the "giant compo- 
nent" of the graph is so big that the number of vertices in its complement 
is o(N). (5) If p(N) were smaller, e.g., Y--~Np(N)< ~ ,  then an extensive 
fraction of the graph would consist of finite connected components and a 
result like Theorem 3 could not be expected. It is also very likely that the 
condition in Theorem 1 on the number of stored paterns is optimal, 
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although as yet we cannot prove this. The situation in Theorem 2 is less 
clear, the reason being the lack of knowledge on the structure of Gibbs 
states in the Hopfield model if the number of patterns exceeds In N. 

The proof of this theorem will be given in the next section. In 
Section 3 and 4 we will use this to prove Theorems 1 and 2, respectively. 

2. A U N I F O R M  B O U N D  ON T H E  H A M I L T O N I A N  

In this section we prove Theorem 3, which provides a uniform bound 
on the difference between the Hamiltonian of the dilute Hopfield model 
and its average with respect to the dilution variables e. We have recently 
proven such a result for the dilute Curie-Weiss model (4) (which corre- 
sponds to the case m -  1) and our basic strategy will be the same; how- 
ever, this time the presence of the random couplings Ju--~2,  ~e~e adds t j 

considerable complications. 
,u ,u Let us set (~,  ~ j ) - ~ ,  ~g~j. We may write the Hamiltonian as (we 

suppress the dependence of e and ~ on N for simplicity of notation) 

1 
HN(g; ~; 0-)= p~iZ~/[((e, Cj)[ sign(~, r (2.1) 

Here we choose to define 

sign(x) = { 1-1 ifif x~>0x<0 (2.2) 

Now define the set A + as the set of all pairs of sites where the spins are 
aligned with the couplings, i.e., 

A +(tr; 4 ) -  = {(i,j)6A xA, i~jlaiaj=sign(~i, ~j)} (2.3) 

Defining furthermore 20 . as the indicator function of this set, i.e., 

}'1 if (i,j)~A+(a;~) 
=0 = .[ (2.4) 

0 otherwise 

and noticing that 

ai(rj sign(i/, ~j) = 220. -- 1 (2.5) 

we may rewrite our Hamiltonian as 

I --- '~i~j [ ( ~ i '  ~J)]~iJ'~iJ HN(e; ~; ~ ) : ~ - ~  ~ [(~i, ~j)[ 8/j 2 
i#j 

(2.6) 
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We want to prove that uniformly in a, the Hamiltonian Hu(e; ~; a) is close 
to its expectation with respect to the distribution P,. Since the first term in 
(2.6) is independent of a, the real task is to show this property for the 
second term in (2.6). More precisely, let us consider the probability 

Y: [(r r Y= I(r r >p~' F= I(r r .) 
iv~j i # j  i # j  

(2.7) 

where 7 = 7(N) is some positive decreasing function tending to zero with 
N that will be chosen appropriately later. We will show that with 
Pc-probability that tends to one as NT ~ ,  the probability (2.7) is exponen- 
tially small. Note that (2.7) is bounded from above by 

i ~ j  i r  

i # j  i C j  

Our estimates will be the same for both terms in (2.8), so that we only 
concentrate on 

Q N ( ~ ) - P ~ (  3a05pN: 2 ](~i, ~J)['E;:~>P(1 + 7 ) ~  [(~i, ~:)J~u) (2.9) 
i ~ j  i ~ j  

We have, bounding the probability of the union by the sum of the 
probabilities and then using the exponential Markov inequality, (6) 

QN(~) <~ ~ i n f e x p l - p ( l + ~ ) t  ~ [(~,~j)]~j  
a~spN t>~O ~ i r  

+ ~ ln[p(e I(r 1) + 1] t  
~ r  ) 

-- ~ inf exp{Au(~, o-)} (2.10) 
a e S a  N t~>0 

Now 
ln[p(e h(e''r 1)+ 1] = E0. ln[pl(r 1)+ 1] (2.11) 

so that the exponent in (2.10) can be written as 

Au(~, a) = ~ _,j~';.{ -p (1  + 7)t [(~,., ~j)] +ln[p(e I~r162 1)+ 1]} (2.12) 
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Now for t >~ 0 we have the following bound: 

ln[p(e I(r162 1)+ 1] ~<p(e I(r 1) 

= P  t [ (~,  ~j)[ t + 2 

) 
+ R~(I(r ~j)l t)~ 

(2.13) 

where 

R3(x) - n-~ (2.14) 
n = 3  

Our strategy will now be the following: Anticipating that R3 will be small, 
we choose t* such that 

-p(1 +~) Z 
~ j  

is minimized, i.e., 

I(~, ~j) l&jt+p ~ I(~i, ~j)l~ejt+p ~ 1(4,, ~j)l 2t2 
2 =eJ i ~ j  i r  

(2.15) 

t* =7 y ' '#j  [(~'' {j)l 3,j (2.16) 
~ ij 

This gives the bound 

1 2 [~ i~J t (~ i '~J ) [ ' - '~U]  2 
QJv(~)~< ~ exp - 5 7 p  ~ Z,~j I(~i, ~j)l ~& 

P ~ ZoR3(t* ](~i, ~j)])t (2.17) + 
i ~ j  ) 

Our aim is to get a a-independent bound on the exponential in (2.17). To 
this end notice that first of all we have the trivial upper bounds 

and 

I(r Cj)l-~s = ~< ~', 1(r 4i)1 (2.18) 
i ~ j  i r  

I(~,, Cj)I2Zo~ < ~ [({,, ~s)[ 2 (2.19) 
iv~j i ~ j  

More interestingly, we may also get corresponding lower bounds. Namely, 
since 

= a i a  s sign(~i, ~j) + 1 (2.20) 
~ -  2 
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we get that 

l(r r �89 ~ [~,~j(r ~j)+ I(r ~w)[] 
i : # j  i # j  

= 1  i c j  

(2.21) 

and hence 

Finally, 

Z 
i ~ j  

I(r r - u ~ 2  
i # j  i # j  

I(r Cj)l=~,~ 1 ~ C,r162 Cj)l 2 
i v~ j ,u, v 

,u v 1 .  2 7t r - -  1 ={  E r 1 6 2  --~fl'l 1u E 1(r Cj)l 2 
u,v  i # j  

and hence 

(2.22) 

(2.23) 

i~j[(~i,{j)123ij>~l[i~jl({i,{j)12-m2N ] (2.24) 

Combining these four bounds, we get the following result. 

Lemma 2.1. t* as defined in (2.16) satisfies the following upper and 
lower bounds: 

t* < * Z , ~ j  I(r Cj)l 
tu =-27 Ei~ j I(~i, ~j)[ 2 - m 2 N  (2.25) 

if t* > O, and 

_ 7 s  I(~,, 4j)1 - mN 
t*>>'t*- 2 Ei+j  i({,, {j)12 (2.26) 

[Note that the condition t* > 0 will be satisfied on the subspace of/2r 
where we will want to use (2.25).] 

An immediate consequence of this lemma together with (2.17) is 
the following proposition, which yields the desired uniform, but still 
i-dependent bound on QN. 
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Proposition 2.2. The probability QN(~) satisfies the bound 

1 [Zi~j  I(~/, ~ j ) l - m N ]  QN( ~) <~ ZN exp { -- -~ TZP ~--~j -((--~, -~.)lg +p Y~ R~(t:l(r Cj)l)} 
i~j 

(2.27) 

for all ~ such that t* > 0. 

What we now need to prove is that with very large probability, the 
exponential in (2.27) is sufficiently small to offset the 2 N prefactor. Note 
that it depends only on the quantities Z ; r  I(~i, ~j)l" and it is those we 
need to control. To see how this can be done, it is reasonable to think of 
the variables (r ~j) as being essentially Gaussians with variance m m. In 
fact, we have the following bounds. 

i . e m m a  2.3. The moments of the variables 
satisfy the following upper and lower bounds: 

(i) If l<~m/2, 

I(~, ~j)l (for i r  

m! I! m! l! 
(m _ l)i <. E( ~ ,, ~J)2'~< 22'--(m-l)! (2.28) 

(ii) If l > m/2, 

m! (k(k+ 1))' k<  E]((~, ~j)12/~<221m! (k(k+ 1)) ' - k  

if m = 2k 

m! k(k(k+ 1))~-k-~ ~< ~z 1(~, ~j)12,< 22Zm! k(k+ 1)) z-k-~ 

if m = 2 k -  1 

(2.29) 

(iii) The odd moments are bounded in terms of the even ones 
through 

(n=l(~i , ~j)12~-2)1+ 1/(~-2) ~ n=l(~ . ~j)12'-1 ~ (IEI(~i , ~j)12') 1-a/(2t) (2.30) 

(iv) Moreover, for the first two moments we have the exact formulas 

- -  ~ m 1 / 2  (2.31) ~](~/, ~jl2 = m ,  El(~i, ~j)[ ~-- 2m Em/2- ] 

ProoL Notice first that point (iii) simply follows from Jensen's 
inequality. (6) The even moments are easier to compute since in this case the 
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# u absolute value may be dropped, and since for ivY j, {i{j has the same 
distribution as ~ ,  so that 

E I ( ~ i ,  r = [E (u~l r (2.32) 

But since r are i.i.d, symmetric Bernoulli, the moment generating function 
for the r.v.Y.~'= 1 ~ is (cosh x) m, and thus 

( ~  ) 21d2t x=o I: ~ = d ~  coshm x (2.33) 
= 1  

Thus, we just need to estimate the 2/th derivative of cosh m x. Let us put 
C=(x) - cosh m-s x sinh = x. Since 

d 
dx Cs= (m-s)C,+l +sCs_l (2.34) 

it is natural to label each term appearing in the 2/th derivative by a 
random walk o2 of length 2l on {0, 1, 2,..., m}. Moreover, since at the end 
we must set x = 0, only such walks will give a nonzero contribution which 
finally produce a Co, i.e., we count only walks starting at zero and ending 
at zero. Finally, we define the weight of each step of the walk by 

w(~ t+ l , co , )=  {mcot--~t 
if cot+ 1 - c o t =  1 (2.35) 
i f  c o t + l  - c o t  = - 1  

Then we have that 

d21 ] 2l 
d ~  cOshmx = ~ ]-I w(e), ,o),_l)  (2.36) 

x = O  co:O ~ 0 t = l  

Now, since co must contain the same number of steps going up as going 
down, we may pair them in such a way that to each step going up at, say, 
time t (and starting at cot), we associate the next step down starting at the 
position co t, = cot + 1. Notice that such a time t' will necessarily exist. Now 
the weight of each such pair is (m-o)t)OOc=(m-oo,)(o),+l), and the 
weight of the walk is the product over all pairs of these quantities. The 
important observation is now that the function (m-x)(x+ 1) attains its 
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maximum at x = ( m -  1)/2, and therefore the walk with highest weight is 
simply the one for which co, is as close to this value as possible under the 
constraints that coo = (D21 = 0. It is trivial ro see that such a walk will have 
the weights corresponding to the lower bounds in (2.28), (2.29). 

The upper bounds are simply obtained by multiplying the highest 
weights by the trivial upper bound 221 for the number of contributing walks 
[-this could be slightly improved to (~z)]. 

Finally, the exact formulas (2.31) for the first two moments are obtained 
by standard computations. This concludes the proof of Lemma 2.3. | 

The reader will now verify that if we were to replace all powers of 
I(r ~j)l in (2.27) by the respective moments, this would indeed yield an 
exponentially small value for QN. Our next step will therefore consist in 
proving that the fluctuations of the powers of 1(r ~j)l about their expecta- 
tions are sufficiently small. More precisely, we want to control the 
probabilities 

Note that the obvious bound 

P , , ( f ) < ~ N ( N -  1) Pe(](~l, ~2)1 n -  IE](~l, ~2)]n/> 6"1E((~1, ~2)1 n) (2.38) 

would be a disaster, as the last probabilities in (2.38) do not depend on N 
and thus will never offset the N 2 prefactor. To improve it, we must exhibit 
some independence of the terms appearing in the sum over i and j. To do 
so, we go only halfway toward (2.38), i.e., we notice that 

(2.39) 

The terms in the remaining sum are now independent. To obtain a bound 
on P.  that behaves like 1/N 2, we now use the sixth-order Chebychev 
inequality to bound the probabilities in (2.39). This gives 

Pc (,~, [,1(~,, #1)1"-Iz I(~,, r ~ c5"N~1(~1, r ~) 

~(Ei~I  [-1(~i, ~l) [n--~](r  ~l)]n-]) 6 
N6~6n([F [(~1, r 6 (2.40) 

Let us put ai = I(~i, ~1)['-IE](~i, ~a)]'. Then, since ~ai=O, 
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i iv~j 

+(63) z 
i # j  (6)(4) 

+ 2 2 2 ~-a~EaZE~ 
i~ jvak 

= N~_a 6 + 1 5 N ( N -  1) Ea~Ea4+ 2 0 N ( N -  1)(~:a~) 2 

+ 9 0 N ( N -  1)(N - 2)(I:a2) 3 (2.41) 

With these preliminaries it is now an easy matter to prove the following. 

I . emma  2.4. There exists a finite positive constant C such that, 
uniformly in m, n, and N, 

~(~.,v~ 1 El(~, ,  r n - -  ~ I(r  e l ) I n ] )  6 ~ g 3 c  ,, (2.42) 
(~ 1(~1, ~2)]n) 6 

ProoL Note that from (2.41)R follows that the quantity on the left 
of (2.42) can be expressed as a finite sum of terms of the form 

~z 1(~2' ~l)]na (2.43) 
Ca. i N '  [-[FI(~2 ' ~ l ) ] n ]  a 

with a = 2, 3, 4, 6; i = 1, 2, 3; and ca,, finite numerical constants. Using the 
upper and lower bounds from Lemma 2.3, one easily checks that the ratios 
of expectations in (2.43) are all bounded by const n, uniformly in m. But this 
yields the claim of Lemma 2.4. | 

From Lemma 2.4 we can now deduce the following result. 

L e m m a  2.5. There exist finite positive constants 6 and K such that 

Pc 3~>>-3"~ [I(~i,~j)[~-W[(~,,~j)I~q>~N2EI(~I,~2)I ~ <<-~5 (2.44) 

Proo[. Just notice that by (2.39) and Lema 2.4 

Pr S [1({,, {J)I"-IE[({,, {J)l "]~>6"N2IEI({',{2)[") 
, # j  

<. 
n>~3 

from which (2.44) follows if 6 is chosen such that C/6 < 1. I 
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Let us now define the event d u  ~ ~ as follows: 

D e f i n i t i o n  2 . 1 .  ~o e t iN ,  iff ~ = ~(~o) satisfies: 

(i) V,,~>3 ~ I(~i,~j)l"<~(l+fi")N2E](r 
ir 

with 5 chosen as in Lemma 2.5. 

(ii) ( 1 - e ) N 2 m < ~  I (~ i ,~ j l2~<( l+e)N2m 
i :/: j 

(iii) ( i - ~ ) N 2 2 m (  m - 1  ) 
2 -W Ira/2] ~<~ 1(4,,4j)1 i#j 

N2 2m / m - 1 \ 
4(1  +e) 2 - ~ [ m / 2 ] )  

We define further the set 

for some ~ < �89 

N0=I N>~N 0 

From the previous results it follows already that dN has large 
probability: 

L e m m a  2.6. The exists a constant 0 < K <  ~ such that 

K 
Pc(tiN) ~> 1 -- N--- 5 (2.47) 

Moreover, 

Pc(A) = 1 (2.48) 

Proof. The bound (2.47) is easily pieced together from the previous 
lemmata. (2.48) follows from (2.47) and the Borel-Cantelli Lemma. (6) | 

Now the event d u  was constructed in such a way as to ensure that 
(2.27), is small. More precisely, we have the following result. 

Lemma 2.7. On the set ~N, we have, for any function 7 such that 
7(N) ~, 0, as NT ~ ,  the following: 

(i) t * ~ < 3 ~  1 -  (2.49) 
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(ii) 
EZ;+j I(G ~91 -mN] 2 1 [ -raN+ (1 - -  ~)(2m/g) 1/2 N2"] 2 

~-~-jj i (~-~, -~-~ F ~>2 (I -+e)mU 2 
1 2 m ) l N 2  +~m-3-~Nml/2 (2.50) 

(iii) ~, R3(t*l(~,, ~j)I)<y3KN 2 (2.51) 
iCj 

Remark. It should be noted here that no assumptions are made in 
this lemma on the speed with which y(N) tends to zero. This is, as we will 
see shortly, essential in order to get the weakest possible assumptions on 
p(N). This renders our proof somewhat more complicated. A simpler proof 
can be found under the assumption that 7(N)(lnN)I/2~ O. 

Proof. The proofs of (i) and (ii) are fairly immediate, using point (iv) 
of Lemma 2.3 (and assuming m large, for simplicity). To prove (iii), just 
notice that on tiN, 

Z R3(t.* I(r Cj)l) 

(tu*) n 
-- E --U-. y~ I(r ~j)l n 

n>~3 iv~j  

(t:)" (1 +~") N2EI(~I, r 
n~>3 
m/2 (tff) 21-1 ( r a i l !  ~(21-1)/2l 

~< ~ (1 +32l 1)N2 221 
l=2 ( 2 l - 1 ) !  \ (m--l)!/ 

mm t,,~2l m! l! 
+ ~ (1 4- r ~,u ! 2 2 1 _ _  

t=2 - - " ~  (21)t (m-l)! 

l = m/2 + 1 

l = rn/2 + 1 

(l +621-a)N2 (t*)21-l (221m! (m@l) 2 1 ( 2 1 -  1)! rn)(2l--1)/2l 

(1 + c521)N2 221rn! (2.52) 
(2t). 

Now we will always assume that m/N goes to zero as N goes to infinity. 
Therefore, t* is effectively bounded by, say, 7y/w/-m, for N large enough. 
Moreover, y will be taken to zero with N, so that we may assume it to be 
as small as desired. It is then a trivial matter to realize that all four sums 
in (2.52) converge and that moreover 
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m/2 (1#~2l--1( m[/l .~(21-1)/2l 
}-" (1 q-a21-1]N 2 ,ou, 22l 

l = =  - " ( 2 l - 1 ) !  \ ( m - l ) ! J  
m/2 

~<N 2 ~ (1 +62l-1)621-172l-1 I!(2l-1)/'2l 
l=2 ( 2 l -  1)! 

<~ C1N273 (2.53) 

and similarly 

,,/2 (t *~2l m! l ~ 
E (1 + ~2')N2 ~ 2 ( m -  I)! <~ C2N27" (2.54) 

l=2 

while the last two sums are bounded by 

C3(1 -t- (~m)7memTm (2.55) 

and are thus completely negligible. Combining these bounds yields (iii). | 

We are finally ready to merge these results into a bound for QN: 

Proposition 2.8. Assume that m/N,LO and pNT oo as N$ oo and 
choose V such that pN72 > c for some contant 0 < c < oo. Then, for co ~ ~N 
and for N sufficiently large, there exists p > 0 such that 

QN(~) ~ e-PN (2.56) 

ProoL Inserting the bounds from the previous lemma into (2.27), we 
get that 

Q N ( ~ ) < ~ 2 N e x p ( _  1 2 2 2 3 \ pN 7 + pU K7 ) 

PN272(1-32KT)+NIn2) (2.57) = exp 3 ~  

Choosing now N large enough and ~(N) such that 

32 
pN72 > - -  In 2 (2.58) 

1 - 32K7 

we get the bound (2.56) | 

From this proposition 
Theorem 3. II 

and Lemma 2.6 we now get immediately 

822/72/1-2-7 
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3. CONVERGENCE OF THE FREE ENERGY 

In this section we discuss the consequences of the uniform bounds 
obtained in the previous section for the convergence of the free energy of 
the dilute Hopfield model. Let us denote by fN, a(~) the free energy of the 
standard Hopfield model, and let us introduce 

AfN, I~(~; ~) = IfN,/~(~; ~)--fN,#(~)l  

We have the following result. 

(3.1) 

Proposition 3.1. Assume that p(N)N~ ~ and m(N)/p(N)N,LO, as 
N T ~ .  Then, for all f i ,  

l im AfN, p(~; ~3) = 0, PC • P~-a.s. (3.2) 
N ~  

ProoL By Theorem 3 there exists an event cg N e ~ x ~ such that 

1 K P(C~gN) ~ ( - - ~ ~ )  ( 1 - - e  - p N )  (3.3) 

such that on <gN, for all ~ ~ seN, 

[HN(~; ~, a) -- ~_,HN(~; e; a)l < 7(N)[m(N)] 1/2N (3.4) 

for any decreasing function y satisfying 7(N)+O as N T ~  and 
p(N) NT(N) 2 > c for some constant 0 < c < ~ .  But [E~HN(~; e; o-) is nothing 
but HN(~; O'), and hence a trivial calculation shows that (3.4) implies that 

AfN,,a(~; ~3) ~ 7(N)[m(N) ] 1/2 (3.5) 

If we moreover choose ~ such that y(N)x/-m$O as N T ~ ,  setting 
cg=_ UNo>~o NW>~No~N, we see immediately that on cg, 

lim AfN, a(~; ~)= lim 7(N)[m(N)]m=O (3.6) 
N ]" ~x) N/"~ 

Now combining the constraints on ~ gives the condition m/pN$ 0 as NT ~ ,  
while (3.3) and the Borel-Cantelli Lemma imply that p(cg)= 1, which 
proves the proposition. I 

Therefore, to prove Theorem 1, we just need to prove the almost sure 
convergence of the free energy of the standard Hopfield model. Now in a 
recent paper, Koch (Is) has shown that under the assumption that m/N,LO, 

~ fN,~(r ~ fcw(fi) (3.7) 
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Tirozzi and Shcherbina (19) also very recently proved this convergence in 
probability (with a bound on the probabilities that cannot yield almost 
sure convergence). As a matter of fact, it is very easy to modify the 
approach of Koch to prove the almost sure convergence (this would even 
seem a more natural consequence of his computations). Let us state this 
result and give the proof for completeness. 

T h e o r e m  3.2. Assume that m(N)/N+ 0 as NT oo. Then 

lim fN,~(~)=fcw(il),  Pr (3.8) 
N?cc 

Proof. We follow essentially the analysis of ref. 15. The first step 
consists in rewriting the partition function in terms of Gaussian integrals in 
a standard way: 

2--U exp[--ilHu,{(a) ] 
a E ~,~N 

= \(Ntff']m/22~z J fem d'z exp -- �89 + i~1 In cosh(il(z, ~) ) ]  (3.9) 

m where z is an m-componenty vector and (z, i ) - Z ~ = l z u ~ ,  etc. Now 
notice that 

1 N 

- -~ Nil(z, z) + ~ In cosh(il(z, ~i)) 
i = 1  

1 
= - 2  Nil(z, z)+ ~ ~ il(z, ~i) 2 

i = 1  

+ ~ (In cosh(il(z, ~ ) ) -  il(z, ~)2) 
i = 1  

1 
- 5  Nil(z, 

+ N max 

1 
2 Nil(z, 

i = 1  

(,ncos., x, 
- ( 1 - a ) A ) z )  

+ Nmax (ln c~ 6 ~x2 (3.10) 
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where the m• matrix A has components Auv= (1/N)5~= 1 r Of 
course, this decomposition is only useful for a choice of 6 such that the 
matrix (4 - ( 1 - 6 ) A )  is strictly positive. If  this is the case, then inserting 
this inequality into (3.9) gives the following upper bound on the partition 
function: 

x det(~ - (1 - 6)A)-  1/2 

<~ {exp[Nmaxx( lncosh( f l x ) -~2~  flx2)] } 

x (~m~n(~ - -  (1 - -  6)A)) -m/~ ( 3 . 1 1 )  

where 2mi~(M) denotes the smallest eigenvalue of the matrix M. (3.11) 
yields immediately the lower bound 

fu'a(~) >~ -- f l- l  max (ln c~ - 

m 
+ 2 ~  ln()~mi,(~ - (1 - 6)A)) ( 3 . 1 2 )  

If we could choose 6 = 6 ( N )  in such a way that 6(N)~O as N T ~ ,  this 
lower bound would converge to the Curie-Weiss free energy, and since the 
Curie-Weiss free energy is trivially an upper bound for the Hopfield free 
energy, this would give the desired convergence. The following proposition 
tells us that with probability one this is indeed the case. 

P r o p o s i t i o n  3.3. Let )],max(A) denote the largest positive eigen- 
value of A. Then, for any constant c and for N large enough, we have that 

P(2m,x(A)>eZ(m/m~/2(l +(l  +c)N-1/61nN))<<.2N-C (3.13) 

Bounds on largest eigenvalues of random matrices can be found, for 
instance, in ref. 13. They prove results like (3.13) for symmetric matrices 
with i.i.d, entries. Their method is in fact well suited to be adapted to the 
present situation. The basic input into the proof of (3.13) is the following 
bound on the trace of the powers of the matrix A: 

L e m m a  3.4. Let k <<. N 1/6. Then 

~:r tr A k <~ 2Ne 2kp/(l + p) (3.14) 

where p = (m/N) 1/2. 
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Remark. Koch {~s) and Tirozzi and Shcherbina ~19) announced 
analogous bounds on the traces of (A -~)k.  We present a proof the lines 
of ref. 13 in an appendix. Let us also note that our proof has the additional 
virtue that it also holds when the ~ are centered but not necessarily sym- 
metric random variables. 

Let us now show how Lemma 3.4 implies Proposition 3.3. 

Proof of Proposition 3.3 (using Lemma3.4). Notice first that 
2m=x(A)~ ~< tr A k for all k (note that A is a positive matrix). Thus, using the 
Chebychev inequality and Lemma 3.4, for all k <<. N 1/6 

P(,~max(A) ~> e 2p/(1 + P)(I + x)) ~< P(tr(A k) > (e 2p/(1 + P)(l -J- x ) )  k) 

I: tr(A ~) 
(e 2p/(1 +P)(1 q- X))  k 

2e2kP/O + p) 
<~N (e z"/~l + P)(1 + x)) k 

\ 1 +x)  

~< k x (3.15) 

Now we choose k as large as possible, i.e., k = N 1/6 and x = (1 + c)N-1/6 In N. 
Then (3.15) yields 

P(2max(A) > e 2p/(1 +P)(1 q- X)) 

~ 2N exp { - NV6 1 ~ l + c)N-1/61n N+-~-~-~/-g~n NJ ~ 

~ 2NN -(1+c) (3.16) 

which proves the proposition. | 

We are now ready to prove Theorem 3.2. 

Proof of Theorem 3.2. By Proposition 3.3, and using the triangle 
inequality, we see that with probability greater than 1 -  2N -2, 

2mi,(~ -- (1 -- 6)A) ~> 1 -- (1 -- 6)(e2t"/N)l/2(1 + 3N -1/6 In N)) 

,-, 6 -  (1 -6)(2(rn/N)I/2+ 3N -1/6 In N) (3.17) 
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so that we may choose 6(N) = 2(m/N) 1/2 + 3N-1/6 In N, which tends to zero 
with N, and get that 

' ( ) fN,~(~)>~ --~maxp lncosh(/~p) 1-6(N)2 flp2 

+ ~ l n  2 +3N-I /61nN (3.18) 

Now the last term in (3.18) goes to zero with N, while the first converges 
(by continuity) to 

max(ln cosh(flp) - �89 = fcw(fl) 
P 

Since (3.18) holds on an event whose complement has summable probabil- 
ity, a standard Borel-Cantelli argument as in previous instances yields 
convergence on a set of full measure. | 

Theorem 1 is now a direct corollary of Proposition 3.1 and 
Theorem 3.2. | |  

4. L IMIT  D I S T R I B U T I O N S  OF THE OVERLAP P A R A M E T E R S  

In this section we will assume that m(N)<in  N/ln 2, which is the 
restriction under which the analog of Theorem 2 could be proved in the 
standard Hopfield model. (14'1~ 

We will now give the proof of Theorem 2. Since it will closely follow 
that given in ref. 10 and makes direct use of some results established 
therein, in order to be concise, we will only stress the aspects due to the 
dilution and refer for details to ref. 10. 

One main ingredient of the proof consists in a random partition of the 
set A = { 1 ..... N} which can be briefly described as follows. Let us fix an 
arbitrary enumeration of the d =  [5~"[ = 2 m elements of the set 5Pro and 
write 

{ e ,  ..... (4.1) 

with ek = (e~,..., ~ '~ ek,..., e k). For all I t= 1,..., m, we denote by e ~ the d-corn- 
t t  # ponent vector e ~ = (el,..., ek ..... e~). Note that the vectors e ~ are orthogonal 

to each other, i.e., 

1 
(e u, e v) = 6u, v (4.2) 
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Now any given realization of the r.v. ~ together with the enumeration (4.1) 
induces a random partition of the set A into d disjoint (possibly empty) 
subsets Ak(~), defined as 

Ak(~)={i~A:~i=ek},  k = l  ..... d (4.3) 

The random partition (4.3) has the property that, for m<lnN/ln2,  the 
cardinality of each subset Ak(~) remains close to its mean value N/d. More 
precisely, remembering that ~-= ~(co) is a r.v. on the probability space 
((2~, ~ ,  ~z), we recall from ref. 10 the following result. 

L e m m a  4.1.(~~ Define the event ~ N ~  as 

~N={CO~O~ ,Ak(~),:-N (l+2k),]2k,<~(N),l<~k<~d} (4.4) 

where 6(N) = (d/N) m in N tends to zero as N tends to infinity. Then 3No 
such that VN> No 

~(~N)>~1-2dexp { -  N ( 1 - 1 ) - ~ 5 2 ( N ) }  (4.5) 

Now let us define the map X~: 

Xr 5 ~  - 1 , - 1 + - -  1- 1 
k=~ IAk(~)l'"" IA~(~)l' 

"X,(a) = (X,.l(a),..., Xr X~,d(a)) (4.6) 

a--* 1 
2 (Yi 

Note that Xr is a d-component vector. Using the random partition of A, 
we can rewrite the overlap parameters in terms of Xdo- ) as 

rn UN ( a, 4 ) = -~ ~ ~ (~ i 
i=l 

= ~  ek 
k=l i~Ak(~) 

1 a 

= d k ~ l  e~.(1 + 2k) Xr 

1 
= ~r (e ", [ / +  ~ ] Xr (4.7) 
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where M is the d • d diagonal matrix with entries M ~  = 2~. Thus, given 
any x e ~ r  the overlap m~v(O, ~), regarded as a function of the configura- 
tions o, takes the value 

1 
rn~u(a; 3) = ~/(e ~, [ M +  ~ ]x)  (4.8) 

for all o in the subset {aeSeulXr }. 
From now on we assume that h ~> 0. To prove Theorem 2, it is enough 

to show that under its assumptions, for any continuous function g: 
[ - 1 ,  1 ] ~ R ,  

lim lim ~ g(m~(a; ~))f~N,~,h(e; 4; ~r) 
h$O N~ov a ~ N  

~g(0) if 0 ~</3 ~< 1 
= ~g(a(/3)6u,,) if fl >~ 1 P~ • P~-a.s. (4.9) 

By (4.9) we have 

g(m~N(a; ~))fq"u,~,h(~; ~;a) = ~ g ( l ( eu ,  [M+~fl]X)]V"N,~,h(e; 4; x) 
\ u  / 

(4.10) 

where V~N,~,h(e; ~) is the probability measure on ~ induced by fqN,~,h(e; 4) 
through the map Xr which to each x e-~r assigns the probability 

v~,p,~(~; 4; x)= Z ~r 4; ~) (4.11) 
x~(~)=x 

Thus, to compute the expectation (4.11), we are left to study the measure 
vT~,~,~(~; 3). 

Let us denote by ~v,~,h(4;o-) the finite-volume Gibbs measure 
associated to the mean Hamiltonian 

~-~H~v,h(~; 3; Cr) = HN(~; c~) -- h(o, ~ )  (4.12) 

that is to say, the Hamiltonian of the standard Hopfield model with a 
magnetic field coupling to the pattern 4 u. Let g~,~,h(~; 3) be the measure 
induced by ~~ ~gN, t~,h(~ , O) under the map Xr The following lemma presents 
a bond on the density V~v,~,h(~; 4; x) in terms of the density V~'v,~,h(4; X). 

Lamina  4.2. There exists an event (gN e ~ X ~ such that on <gN, for 
all x e Ze, 

e-- 2flN~ff-m~"(N)y~N,~,h( 4; X) ~ Y~N, fl, h(t3; ~; x )  ~ e2flNx/"~'(N)y~N, fl, h( ~; X ) (4.13) 
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where y(N) is chosen as in Theorem 3. Moreover, for N large enough 

P(CgN) >~ (1-- ~--5) (1-- e--PN) 

where p and K are positive constants. 

(4.14) 

IHN(~; 4; o-) - I:~Hg(e; 4; a)l <~ Y(N)x//-~N 

Now note that 

IH~,h(e; 4a) -- ~=~H~v,h(e; 4; ~)l : IHN(e; 4; ~ ) -  ~-~HN(8", 4; 0)1 (4.16) 

and (4.15) and (4.16) together with the definitions of V~v,~,h(4, X) and 
VN,r X) easily yields (4.13), which proves the lemma. I 

Let us now consider the measure VN,,,h(4). Since the mean 
Hamiltonian (4.12) can be expressed in terms of the overlap parameters as 

E~H~N,h(e;4;cr)=--N{ ~= [m~N(G4)]2-hm~(G4)}+mN ( 4 . 1 7 )  
p 1 

we have by (4.8) that, for any given x ~ 3 e ,  the right-hand side of (4.15) 
takes the same value for all the configurations o- such that Xe(a)=x. 
Therefore the density gTv,~,h(~; x) can be written as 

V~v,p,h(4, X)= exp{ --NF),p,h,M(X)} 
~2x ~ z~ exp{ --NF},tj, h,M(X)} 

(4.18) 

for all x e ~ ,  where 

F~v,~,h,M(X) = --fl (e u, [ M + ~ J x )  
# 1 

+ In [ {o- e seN: Xe(o') = x}l 

+ h l [ M + ~ ] x ) }  

(4.19) 

(4.18) has now a convenient form in that, roughly speaking, the point at 
which (4.19) takes its minimum value can be computed exactly and 
g~V,r X) can be shown to be concentrated at that point. Wer collect the 
result we will need in the following lemma. 

(4.15) 

Proof. By Theorem 3 there exists an event CgNe~X ~ whose 
probability satisfies the bound (4.14) such that on cg N, for all a e s g u  
and for any function 7 satisfying ? (N)40  as NT oe and pN72> c for some 
constant 0 < c < o% 
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L e m m a  4.3. (1~ Let a(/~, h) be the largest solution of the equation 
x=tanh(fl[x+h]) and denote by ff~(h,//) ~ [ - 1 ,  1] d the vector 

Yc~(h, fl) = a(fl, h)e ~ (4.20) 

Let o(h, N) and O(h, N) be two arbitrarily chosen functions that tend to 
zero as N tends to infinity. Define the subset A E 3~ as 

A = {xeZ:[  IIx-~Z=(h,/~)[I ~< ~/-d~(h, N)} (4.21) 

Then, for all co e @U and for N large enough 

x ~ A  c 

<~ exp[ N{ 36( N) - a~Z( h, N)} ] 

+exp[N{36(N)+bflhO(h,N)-~(o(h,N)-O(h,N))2}] (4.22) 

where a and b are positive constants. 

We are now ready to complete the proof of Theorem 2. 

Proof of Theorem 2. Subtracting from both sides of (4.10) the term 
g((1/d)(e ~, ff~(h,//))), we get 

~ff~u [g(m~v(a; ~))-g(l(eu,~(h,  1~)))] C~v,~,h(e; r 

[(1 ) )] x, = ~ g ~l(eU,[M+~]x) - g  ~l(e~,2c~(h, fl)) v~,~,h(e;~; 
x ~3 

(4.23) 

and decomposing the sum over x e Z~ as the sums over x e A and x E A c, 

x~3.~[g(l ( e~, [M+ ~]x)--g(d(e~,Y~(h, fl)))lV~u,l~,h(~; ~;x) 

<~x~A g(  l (e~' [M + ' ] x ) ) - g ( l  (e~'yc~(h' fl))) V~u'~'h(e; ~; X) 

+ ~. g(l(eu,[M+']x)t-g(l(e~,Yc~(h,t~))l V~v,/~,h(~;~;x) 
x E A  c 

(4.24) 
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so that we are left to show that each of the two terms in the right-hand side 
of (4.24) goes to zero as N tends to infinity. To bound the former, note that 
for all x~A and c o e d s  

7t (et'' 1 1 [M+~]X)+Tl(e",X~(h,l~)) <6(N)+e(h,N) (4.25) 

since on NN, [(e ~, Mx)[ <~ db(N), and by definition 
[(e ", [x - 2~(h, fl)])l ~< do(h, N). Therefore, by continuity of g, 

g ( l ( e " ,  [M+~]x))-g(d(e~, 2~(h, fi)))7 ~< ff 

of A, 

(4.26) 

for any arbitrarily small ~, provided that N is sufficiently large and finally, 
for all e) e ~u,  

(1 ) ) g 7t(e ~, [M+Iq]x) -g  (e",2~(h,~)) V~v,~.h(~;~;x)~<~ (4.27) 
x ~ A  

To treat the second term in the right-hand side of (4.24) we use that 
since g is bounded, 

g ( l  (e~', [M+Id]x ) ) -g ( l  (e~,Y~(h, ~))) <<.2,,g,[o~ 

where i]" IJ ~ denotes the norm of the supremum. Thus 

g ( l  (#,, [M + id]x)) _ g ( l  (e~, .~(h, /~))) Vx.~.h(~; ~;X) 
x E A  c 

~<2[Ig[]~ ~ V~v.~.h(e;~;x) (4.28) 
x ~ A  c 

Inserting successively the bounds (4.13) and (4.20) of Lemmas 4.2 and 
4.3, we have that, on cg u c~ ~u,  

Y~ ~Tv,~,h(e; ~; x) 
x ~ A  c 

~< expE2flNx/~7(N)] (exp[N{33(N) - @2(h, U)} ] 

bflh 
(4.29) 
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and this last bound converges to zero as N tends to infinity provided that 
is chosen such that ~(N)[m(N)]I/2,LO as N T ~  and that Q(h,N) and 

0(h, N) are chosen such that 

2fixf-my(N ) - 36(N) - aO2(h, N) < 0 (4.30) 

and 

U ) - ~ - ~  [p(h, N) -O(h ,  N)32 < 0  (4.31) 2fl~-m~(N) + 3b(N) + bflhO(h, 

which is possible for any a and b. Note that putting together the above 
constraint on 7 and those of Theorem3 imposes the condition 
m(N)/p(N)N$O as N T ~ .  Now setting g--OUo>oOu>uo{CguC~Nu}, 
(4.5), (4.14), and the Borel-Cantelli Lemma imply P ( g ) =  1. Thus (4.23) 
and (4.24) together with the previous bounds give 

lim ~ g(m~N(a; 4))--g ( e~, 2~( h, fl)) ~N.~,h(e, 4; Or) = 0, 
N T ~  N 

PC x P~-a.s. (4.32) 

Finally, using (4.2) 

1 a+(fl) (e ~', e ~) = a+(fl)6,,~ (4.33) ( e~, )7"(h,/3)) = 

uniformly in N, and since 

lim a + (fl)6 ,,v = ~0 ~ +  h,0 mu, v(/~ ) 

the case where h/> 0 of Theorem 2 is proven. | 

(4.34) 

A P P E N D I X  

In this appendix we give a proof of Lemma 3.4. Since this result may 
have some more general interest, we present it under more general conditions 
on the 4f. Our proof is largely inspired by an estimate on largest eigenvalues 
of random matrices given by Komlos and Ffiredi. (13) 

We will assume the following about  the 4~ here: 

(i) {4~}~-11''~ is a family of i.i.d.r.v.'s. 
, . . . ,  

(ii) ~:~f =0.  

(iii) E(4~)~-..<a l for all l/>2. 
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We shall also, without loss of generality, assume that m ~< N. Let us 
define the ( N +  m) x ( N +  m) matrix B with elements 

( ~ - - m  if ~>mandfl>~m 
B~#=~ B-m if fl>manda<~m 

~0 ~ else 

(A.1) 

Notice that then 

(e~)~ = ~=1 ~ 

if c~<~mandfl<~m 
if ~>mandfl>m 
else 

(A.2) 

Clearly B 2 is the direct sum of two matrices B1 and B2, and the matrix A 
we are interested in is just A = (1/N)B~. Let us introduce the two index sets 
11 = { 1,..., m} a n d / 2  = {m + 1 ..... m+U}. Clearly then we may write 

Etr  B~= ~ ~ ~_(B~o~oB~o~,...B~k_~zk_~Bzk_~o ) (A.3) 
ct0,...,C~k- 1 e I I f lO, . . . , f lk- leI  2 

We may think of the two sums as sums over sequences (Co ..... ak-  1) ~ I~, 
etc. For  such a sequence we will denote by 

{(~o,...,~k-1)} = { te  1113o<,<k s.t. a , =  t} (A.4) 

the set of different values the sequence runs through. We may then arrange 
the sums in (A.3) in such a way as to first sum over all possible subsets 
F1 c I1 and F:  c 12 and then over all sequences for which the values run 
through exactly these subsets. Thus 

~ t rB1  k :  Z 2 ~ Z 
r l = l t  r 2 = 1 2  (~0 , . - - ,~k  t ) ~ l l  ~ ( f l 0 , . . - , f l k - l ) ~ l ~  

{(~o,..-,~k-l)} = fl {(/~o,.--,/~k- 1)} = F2 

• ~(B~o~o B~o~l " " " B~k ~ ~k- ~ BB~-I ~o) (A.5) 

Now it is obvious that the sums over the sequences in (A.5) do not depend 
on the exact sets F1 and/"2,  but only on the cardinalities of these two sets. 
Thus we may write 

min,km, 

EtrBkl= Z Z Ekr~ (A.6) 
r ~ l  s = l  ~" S ' ' 
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where 

E k ,  r, s = E E 
(n0 ...... k 1)Elf (~0,---,~k- 0 ~ 72 

{(o~O,..,,ak-1)} = {1 ...... } {( f lO, . . . , f lk- l)}  = {m + 1,...,m + s }  

X [E(B=o/~oBao~l " "  B~k l f lk-I  B~k-l~o) (A.7) 

and where we have used that the combinatorial factors in (A.5) count the 
number of subsets of given cardinality. Note that Ek .... no longer depends 
on rn or N [the appearance of rn in (A.7) being completely spurious]. 

To estimate these last quantities, we would like to think of the sums 
in (A.7) in a slightly different way. Let us denote by fr.s the complete 
bipartite graph with vertex sets labeled by N =  {1,..., r} and 5 ~ -  
{m + 1,..., m + s}, i.e., the graph with vertex set N w 5~ and edge set ~ x 5 r 
Each term in the sum (A.7) corresponds to a walk of length 2k, m, on this 
bipartite graph (i.e., a sequence of edges linking alternately the sets 
and 5~) with the property that each vertex of fir,, is visited at least once. 
Moreover, it is clear that any walk which passes over any given edge of 
fr, s exactly once will give a zero contribution, as the expectation of the 
corresponding product of the B~ vanishes by assumption (ii) on the 
distribution of the 4. We will denote by ~Wk(r, S) the set of walks that give 
a nonzero contribution. By our assumptions, we then have the following 
result. 

Lemma A.1. 

Ek .... ~<~21~+~ l l [ ~ ( r , s ) l  (A.8) 

We are thus left to estimate the number of walks in ~/rk(r, s). 
Notice first that for fixed r and s, the shortest possible walk contribut- 

ing must have length 2k = 2(r + s - 1 ) .  Let us thus first consider the case 
k = r + s - 1. In this case, the walk must visit each edge either zero or two 
times. Moreover, the edges it does visit form a bipartite tree on (~, 5g). We 
classify all such walks according to the different trees they generate, count 
the number of walks for a given tree, and then enumerate all bipartite trees. 
We get the following result. 

Lemma A.2. Let t be a bipartite tree on (~, 5P) with coordination 
numbers d l , . . . ,  d r ,  C m +  ] . . . . .  Cm+ s. Let g2(t) denote the set of all walks in 
~ + s  l(r, s) that generate t. Then 

m + s  

I X 2 ( t ) l = ( r + s - 1 ) f l  ( d , - 1 ) !  [ I  ( c j -1 ) [  (A.9) 
i = 1  j = m + l  
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Proof. Let us pick a particular vertex i, say in N. Suppose co arrives 
at i at time no for the first time. There are d i -  1 branches emerging from 
i (other than the one the walk just comes from), and the walk must pass 
completely over them before it is allowed to return. So at the next step, 
there are (d~- 1) choices for the walk to continue. Given that choice, the 
walk will return to i at some later time n~ after having passed exactly over 
the entire chosen branch. Now there remain ( d ; - 2 )  choices to continue 
and so on, until after the ( d i -  1)th visit of the vertex i it leaves it in the 
direction it first came from, never to return to it. Clearly, the total number 
of choices arising from the visits at this vertex amounted to ( d i -  1)!, and 
obviously each vertex contributes such a factor, whence the two products 
of factorials in (A.9). Finally, it remains to decide on the starting edge for 
the walk, of which there are (r + s - 1 ), which accounts for the first factor 
in (A.9). | 

By this result, we only have to know the number of bipartite trees with 
given coordination numbers. However, this is a standard problem of graph 
theory and one has the following generalization of Cayley's formula: 

Lemma A.3. Let T(r, s; d 1,..., dr; C m+ 1,'.., Cm +s) denote the number 
of bipartite trees with given coordination numbers di, cj. Then, if Z ,  d i=  
~ , j c j = r  + s- -1 ,  

T(r, s; dl,...,dr; Cm+ 1,'", Cm+s) 

( r -  1)! ( s -  1)! 
- ( d l -  1)! .--(d r --  1)! (Cm+ 1 - -  1)! .. .  (Cm+s- 1)! 

(A.lO) 

and zero otherwise. 

(The proof of this formula is by induction as in the standard version 
of Cayley's formula. See, e.g., ref. 2.) 

Combining these results, we get the following. 

LemmaA.4. L e t k = r + s - l .  Then 

I ~/Uk(r, s)l = ( r + s -  1) ( r + s - - 2 " ]  2 
\ r - -1  J ( r - -1) ! (s - -1) !  (A.11) 

The proof of this formula is straightforward. 
Let us now return to the general case, k >~ r + s -  1. Using the previous 

results, it is fairly easy to prove the following rather crude bound: 
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Lemma A.5. 

~<( 2k ) ( s r )  2r " + l ) ( r + s - 1 )  
I ~ ( r ,  s)l \ 2 ( r + s -  1) 

( r  + s - -  2"~ 2 
x r - -1  ] ( r - -1 ) ! ( s - -1 ) !  (A.12) 

Proof. To get (A.12) just note the following: First, for an arbitrary 
walk on, it is still possible to construct in a unique way a bipartite tree t (o)  
on (~, 5e). To do this, just follow the walk and include into t successively 
all edges that lead to a vertex not previously visited by the walk. Then we 
may construct a new walk 6)(o) of length 2(r + s -  1) whose associated tree 
is also t(~) by again following o and including an edge into ~ if it is an 
edge from t and is visited the first or the second time. Moreover, we give 
it the orientation + if it is visited the first time and - if it is visited the 
second time. It is easy to verify that this creates the desired walk. Now 
we know how many walks 6) exist; thus we need only to estimate the 
number of walks co giving rise to the same 6). To do this, just squeeze 

2k 2 ( k - r - s + l )  edges between those of 6). There are (2r ways of 
distributing them, and there are no more then sr ways of placing each 
edge (in fact there are much fewer). But this gives the estimate in 
Lemmma A.5. | 

Let us define the quantities 

SNmkrs~-G2(r+s-1)(N)(m)(s r 2( r-Jf-S-2k 1) ) (Sr)2(k . . . .  + 1)(r.q_ S _  1) 

x ( r + s - 2 ~ 2 ( r -  1)l ( s -  1)! (A.13) 
r - 1  ,/ \ 

We clearly have that 

E t r B ~ 4 Z E  SN, m,k .... 
r s 

k+l  q--1 
= E  E SN, m,k,r,q--1 

q=l  r= l  

Now a simple calculation shows that 

5k 6 
SN, m,k,r,q- 1 - r ~ 12r _ k/N) SN'm'k'r'q--r 

(A.14) 

(A.15) 
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and therefore, if k <~ Nl/6ff t/3, 

1 
SN, m,k,r,q 1 -- r ~ 2SN, m,k,r,q r 

Thus 

k + l  q - - I  k 

~ SN, m,k,r,q r <~2 2 Su, m,k,r,k-r 
q = l  r = l  r = l  

and finally we arrive at the following results. 

/ e m m a  A.6. For k <<, N 1/6, 

E tr B~ ~< k max r SN, m,k,r,k-r 

(A.16) 

(A.17) 

(A.18) 

What we are left with finally is to determine the maximum in (A.18). 
For  N large, and using that k ~ N, we find that the minimum is realized for 
r ~ roT, where 7 = p/(l + p) [remember that p = (m/N)m]. Inserting this 
value, a simple calculation show that the right-hand side of (A.18) is equal 
to Nk+le 2k~, up to an irrelevant correction factor that goes to one as 
NT oo. But from this, Lemma 3.4 is obvious. II 
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NOTE ADDED IN PROOF 

The results allowing to remove the condition m <  (ln N)/(ln 2) in 
Theorem 2 have meanwhile been obtained by the authors and P. Picco. ~2~ 
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